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Abstract

The generalized mathematical formulation of sloshing dynamics for partially

filled liquid of cryogenic superfluid helium II in dewar containers driven by _-

both the gravity gradient and jitter accelerations applicable to scientific

spacecraft which is eligible to carryout spinning motion and/or slew motion for

the purpose to perform scientific observa=ion during the normal spacecraft

operation are investigated. An example is given with Gravity Probe-B (GP-B)

spacecraft which is responsible for the sloshing dynamics. The Jitter

accelerations include slew motion, spinning motion, atmospheric drag on the

spacecraft, spacecraft attitude motions arising from machinery vibrations,

thruster firing, pointing control of spacecraft, crew motion, etc. Explicit

mathematical expressions to cover these forces acting on the spacecraft fluid

systems are derived. The numerical computation of sloshing dynamics have been

based on the non-inertia frame spacecraft bound coordinate, and solve time-

dependent, three-dimensional formulations of partial differential equations

subject to initial and boundary conditions. The explicit mathematical

expressions of boundary condltlons to cover capillary force effect on the liquid-

vapor interface in mlcrogravity environments are also derived. The formulations

of fluid moment and angular moment fluctuations in fluid profiles induced by the

sloshing dynamics, together with fluid stress and moment fluctuations exerted on

the spacecraft dewar containers have been derived. Results of this study have

been widely published in the open journals.



I. Introduction

For the purpose to carry out scientific experiments, some experimental

spacecraft use cryogenic cooling for observation instrumentation and telescope,

superconducting sensors for gyro read-out and maintain very low temperature near

absolute zero for mechanical stability. The approaches to both cooling and

control involve the use of superfluid liquid helium II. In this study, sloshing

dynamics associated with spinning motions are investigated. To cover the

spacecraft spinning motions, the Gravity Probe-B (GP-B) spacecraft has been

chosen as the example in this study. "The GP-B spacecraft adopts the cooling and

boil-off from the cryogenic liquid helium dewar as a cryogen and propellant to

maintain the cooling of instrumentations, attitude control and drag-free

operation of the spacecraft. The potential problems for cryogenic liquid in

dewar container could be due to asymmetry in the static liquid helium

distribution and to perturbations in the liquid-vapor interface caused by slosh

wave excitation driven by pointing control, machlneryvibration, etc.

For the case of the GP-B spacecraft, cryogenic liquid helium II, at a

temperature of 1.8 K, is used as the propellant. With its superconducting

behavior, there is no temperature gradients in the liquid helium. In the absence

of temperature gradient along the surface which drive Marangonl convection, the

equilibrium shape of the free surface is governed by a balance of capillary,

centrifugal and gravitational forces. Determination of liquid-vapor interface

profiles based on computational experiments can uncover details of the flow which

can not be easily visualized or measured experimentally in a micrograviry

environment.

The instability of the liquld-vapor interface surface can be induced by the

presence of longitudinal and lateral accelerations. Slosh waves are, thus,
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excited which produces high and low frequency oscillations in the liquid

propellant. The sources of the residual accelerations range from the effects of

the Earth's gravity gradient and Jitter accelerations which include, atmospheric

drag on the spacecraft, vibration of compressor, spacecraft attitude motions

arising from machinery vibrations, thruster firings, spacecraft slew motion,

pointing control of spacecraft, crew motion, etc. Recent study (Kamotanl et

al., 1981) suggest that the high frequency accelerations may be unimportant in

comparison to the residual motions caused by low frequency accelerations.

Time-dependent dynamical behavlor of partially-filled rotating fluids in

reduced gravity environments was simulated by numerically solving the Navler

Stokes equations subject to the initial and the boundary conditions (Hung and

Shyu, 1991 a,b,c; 1992 a,b,c; Hung et al., 1991 a,b,c; 1992 a,b,c). At the

interface between the liquid and the gaseous fluids, both the kinematic surface

boundary condition, and the interface stress conditions for components tangential

and normal to the interface, were applied (Hung and Shyu, 1991 a,b,c; 1992 a,b,c;

Hung et al., 1991 a,b,c; 1992 a,b,c). The initial conditions were adopted from

the steady-state formulations developed by Hung et al (1989 a,b,c). Some of the

steady-state formulations of interface shapes were compared with the available

experiments carried out by Leslie (1985) in a free-falling aircraft (KC-135).

The experiments carried out by Mason et al (1978) showed that the classical fluid

mechanics theory is applicable for cryogenic liquid helium in large containers.

In the spacecraft orbit around the Earth, the direction of azimuth angle

of Earth toward the location of the spacecraft geometric center varies from 0°

along the rolling axis of spacecraft to various directions in which three

dimensional calculation shall be assumed.

As the spacecraft moves along the orbit, any fluid capable of motion



relative to the spacecraft is subject to the acceleration that arises from the

gravity gradients of the Earth (Avduyevsky, 1984; Forward, 1982; Mister et al.,

1973). The interaction between the particle mass of fluid and the spacecraft

mass due to gravity gradient accelerations (Forward, 1982) are capable for the

excitation of slosh waves and disturb the fluid system which induces the

fluctuations of viscous stress and its moment exerted on the containers of the

spacecraft fluid systems. In the meanwhile, the sources of residual acceleration

of gravity jltter range from atmospheric drag on the spacecraft, background

gravity, spacecraft attitude motions arising from machinery vibrations,

spacecraft slew motion, thruster firings, crew motion, etc., are also capable for

the excitation of slosh waves on the fluid containers.

It is critically important to understand the physical and dynamical

behavior of cryogenic helium in a rotating cylinder to effectively promote space-

oriented missions.

At temperatures close to absolute zero, quantum effects begin to be of

importance in the properties of fluids. At a temperature of 2.17°K, liquid

helium has a A-point (a second-order phase transition); at temperatures below

this point liquid helium (helium II) has a number of remarkable properties, the

most important of which is superfluidity. This is the property of being able to

flow without viscosity in narrow capillaries or gaps.

The basis of the dynamics of hellumll is the following fundamental result

of microscopic theory. At temperatures other than zero, helium II behaves as if

it were a mixture of two different liquids. One of these is a superfluid and

moves with zero viscosity along a solid surface. The other is a normal viscous

fluid. It is of great importance that no friction occurs between these two parts

of the liquid in their relative motion, i.e., no momentum ls transferred from one
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to the other.

It should be emphasized that regarding the liquid as a mixture of normal

and superfluid parts is no more than a convenient description of the phenomena

which occur in a fluid where quantum effects are important. One of these motions

is normal and has the same properties as the motion of an ordinaryviscous fluid,

but the other is the motion of a superfluid. The two motions occur without any

transfer of momentum from one to another. We can, in a certain sense, speak of

the superfluid and normal parts of the fluid, but this does not mean that the

fluid can actually be separated into" two such parts.

If fluid flow can separate helium ll into the regions of the superfluid and

the normal fluid, two temperatures zones are immediately created. A very low

temperature zone is located at the zone of very high density concentration of the

superfluid, while a high temperature (below 2.17 ° K) zone is located at the zone

of very high density concentration of the normal fluid at the other end. The

existence of a sharp temperature gradient at the interface between the superfluid

and the normal fluid results in the creation of a great difference in chemical

potential, which, in turn, induces a great reverse pressure gradient, creating

the environment of isothermal fluid distribution everywhere throughout the

cylinder and homogenous distribution of superfluid density concentration. This

illustration of the possible separation of superfluid from normal fluid of helium

II means that there is in reality, no way for anyone to achieve the separation

of the superfluid from the normal fluid of helium II. In other words, in

considering the dynamical behavior of helium II in a large rotating cylinder, a

mixture of the superfluid and the normal fluid without separation of the two

fluids is accounted for in the model computation. Density concentration of

superfluid is a function of temperature, which is also true for the surface
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tension and viscous coefficient for helium II (Wilks, 1967; Hoare et al., 1961;

Hung, 1990; Hung and Lee, 1992). In fact, the experiments carried out by Mason

et al. (1978) showed that the classical fluid mechanics theory is applicable for

cryogenic liquid helium in a large container. In this study, the theory of

viscous Newtonian fluids is employed with modification of transport coefficients

adjusted by normal and superfluid density concentration which is a function of

temperature.

II. Functions of Scientific Observation and Spacecraft Motions

The GP-B spacecraft is a sun synchronous Earth satellite orbiting at 650

kmaltitude directly over the poles. The functions of scientific observation for

the GP-B spacecraft and its motions are illustrated as follows:

The GP-B spacecraft is a relativity gyroscope experiment to test two

extraordinary, universlfied predictions of Albert Einstein's general theory of

relativity (Wilkinson et al., 1986; Stanford Relativity Gyroscope Experiment,

1986). By using gyroscopes (ones with electrically supported spheres, spinning

in a vacuum and others which utilize the spins of atomic nuclei, circulating

sound waves, and even circulating laser beams), the GP-B measures two distinct

space-time processes, frame dragging and the _eodetic effect, which gradually

changes its directions of spin. In these gyroscopes, the underlying principle

is that rotating systems, free from disturbing forces, should remain pointing in

the same direction in space.

The physical meaning of "the same direction in space" can be explained from

the differences in the Newtonian and Einsteinlan concepts of the universe. For

Newton, the answer was easy, in that space and time were absolutes. A perfect

gyroscope set spinning and pointed at a star would stay aligned forever. Not so

for Einstein, for whom space and time is warped. A gyroscope orbiting the Earth



finds two distinct space-time processes, frame dra_Inz (rotation of space-tlme)

and the zeodetlc effect (curvature of space-time), which will be measured by the

GP-B.

As to frame-dragging for disturbances in the rotation of space-tlme,

calculations based on a gyroscope in polar orbit at 650 km altitude should turn

with the Earth through an angle amounting, after one year, to 42 milliarc-seconds

(I milliarc-second - 10 -3 arc-second; 3.6 x 103 arc-seconds - i°, angular degree)

(Everitt, 1990). As to the geodetic effect for disturbances in the curvature of

space-time, the gyroscope's motion for rotation in the orbit plane at a 650 km

altitude, from relativistic correction to the complicated motion of the Earth-

Moon system around the Sun, should turn6,600 milllarc-seconds per year (Everitt,

1990).

Furthermore, one of the GP-B's most important tasks is to investigate the

gravitational action of moving matter in the universe. In other words, matter

moving through space-tlme can be thought of as creating a new force-

gravitomagnetism, which is similar to electromagnetic force created by an

electric charge moving through magnetic fields (Mister et al., 1973; Everitt,

1990). The frame-dragging measurement detects this force and fixes its scale.

In order to insure these extremely precise and accurate measurements and

gyroscope operations, near zero temperature is required for mechanical stability

of the instrument, preservation of the lead bag magnetic shield, shielding the

gyroscopes against nongravitation disturbances, and for reading their direction

of spin. Near zero temperature cryogenic liquid helium II (I.8°K) has been

chosen to serve this purpose (Mason et al., 1978; Hung, 1990).

The GP-B instrument comprises four gyroscopes and a reference telescope

sighted on Rigel, a bright star in Orion. In polar orbit, with gyro spin
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directions also pointing toward Rigel, the frame dragging and geodetic effects

come out at right angles, each gyroscope measuring both. The GP-B attitude

controller with a fine pointing system inside the dewar probe will constantly

assure the operation of the spacecraft within the range of the scope of each

experiment through the proper control of thrust.

Thrust comes freely from the dewar's boil-off helium vapor, in contrast to

a traditional gas Jet control system which uses on-off valves to save gas. Here,

the copious supply of vapor allows the use of proportional thrusters: pairs of

opposed nozzles adjusted continuously for much smoother control. Six thruster-

pairs, suitably arrange, cover all three control functions with redundancy in

case of failure. To take advantage of the characteristics of vlscous-free

superfluid helium II under A transition point, a porous plug is used to control

the helium boil-off and to produce the fountain pressure to serve as their thrust

Jet for the spacecraft propulsion system.

To comprise these functions of scientific observation, GP-B stores its

gyroscopes, telescope, probe mass and others in the center core of the dewar

probe surrounded by the cryogenic helium II liquid. The dewar container of the

GP-B is spinning with a rotating rate of 0.i rpm during normal operation. As the

telescope is constantly sighted on Rigel, gyro spin directions also pointing

toward Rigel during the spacecraft moving around the polar orbit. The GP-B with

its rotating dewar, there is no slew motion involved in the spacecraft motion.

III. Basic Charcterlstics of Gravity Gradient

and Gravity Jitter Accelerations

Any fluid element inside the on-orbit spacecraft fluid system is subject

to the acceleration that arises from the gravity gradient of the Earth

- (Avduyevsky, 1984; Forward, 1982; Mister et al., 1973; Hung and Pan, 1993; Hung



et al., 1993 a,b,c). Once the spacecraft orbit is fixed, the orbit period is

determined and the basic structure of the gravity gradient acceleration also can

be calculated. However, gravity gradient acceleration acting on each fluid

element inside the on-orbit spacecraft fluid system is different dependent upon

the distance of the location of the fluid element to the geometrical center of

the spacecraft and its direction toward the location of the center of the Earth.

This acceleration can only be calculated based on the non-lnertla frame of

spacecraft bound coordinate. Thus, the coordinate system shall be transformed

from ordinary inertia frame coordlnate to non-inertla coordinate.

(A) Orbit Motion of Spacecraft

Let us consider the case of the GP-B spacecraft, which is the Earth

satellite orbiting at 650 km altitude directly over the poles, the orbit period,

ro can be computed from following expression:

R3/2
C

_°=2= R _i/= (3-i)
BSo

where R E denotes the radius of Earth (- 6373 km); Re, the radius of the circular

orbit (- R E + h - 7023 km); h, orbit altitude (- 650 km); and go, Earth gravity

acceleration (- 9.81 =/s2). For the case of the GP-B spacecraft, the orbit

period ro - 97.6 min, and orbit rate n - _/% - 1.07 x 10 -3 =,4/,.

As the spacecraft is orbiting around the Earth, the azimuth angle of the

Earth, _Z, toward the location of the spacecraft geometric center varies with

respect to time. At time t - 0, the rolling axis of the spacecraft is aligned

with the radial direction of the Earth's center to the spacecraft geometric

center. Assuming the spacecraft rolling axis is linearly turning around 0° to

360 ° in the orbit period, to, of the spacecraft when the spacecraft is orbiting

around the Earth. This is particularly true for the case of the GP-B spacecraft.
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Without the spacecraft slew motion, the azimuth angle (_zo) can be defined as

= 2___ C (3-2)
_o To

where r o is the spacecraft orbit period [defined in Equation (3-I)]; and t is the

time measured from the instant when the direction of the spacecraft rolllngaxls

is aligned with the radial direction of the spacecraft geometric center to the

center of the Earth.

(B) Spinning and Slew Motions of Spacecraft

For the purpose to carry out" wlde-range observations, some scientific

spacecraft requires slew motion with respect to the mass center of the

spacecraft. For the case of the spacecraft slew motion, azimuth angle, shown ln

Equation (3-2), shall be modified through the coordinate transformation of slew

motion when the spacecraft is Orbiting around the Earth.

Let us assume that the slew motion starts with the center located at the

mass center of the spacecraft. Let us choose cartesian coordinate (x", y", z")

with z"-axis along the axis of the dewar container (see Figure i). At time t -

0, the radial vector rc from the center of the spacecraft to the center of the

Earth lles on the x"-z" plane of the cartesian coordinate chosen. The azimuth

angle _ is defined as the angle between the radial vector rc and the z"-axis.

Rotation matrices for spinning and/or slew motions along the x"-, y"- and z"-axes

can be expressed as

COS_xt sin_xt 0 1 -sin_zt cos_zt

-sin_xt cos_xt], sin_yt 0 cos_yt], 0 0

respectively. Here, _., _ and _z denote angular velocity of slew and/or

spinning motions along the x"-, y"- and z"-axes, respectively. Radial vector rc



in cartesian coordinate without slew and spinning motion is

fco = [sinSEo, o, -cos_E o] (3-3)

With an execution of spinning motion along the z"-axis only, radial vector rc

becomes

fC-E =l

COS_=t sin_,t i]
-sin_=c cos_zt

0 0

= [sinSsocos_,C, =sin$soSin_=c,-costs o] (3-4)

With an execution of slew motion along the y"-axls only, radial vector re becomes

'COSG)ytO0 1 -Sio_)Yt]

sin_yr 0 cos_y_]

= [sin(_zo+ezr), 0, -cos (_*eyt) ] (3-5)

With an operation of slew motion along the x"-axls only, radial vector rc becomes

I!0 01 sifc-x = c°s_xt sin_xt O@8°

-sin_xt cOS_xt j [-c°s@Ec

= [sin_,-cos@_sin_xt,-coSSzoCOSexC] (3-6)

In other words, radial vector re will be modified from the mathematical

expression shown in Equation (3-3) to (3-4), (3-5) and (3-6) for the slew and/or

spinning motions along the z"-, y"-, and x"-axes alone, respectively. In

particular, for the case of slew motion along the y"-axis, comparison between

Equations (3-3) and (3-5), it shows that the azimuth angle will be modified as
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_z = Szo + _yC (3-7)

For the successive operations of the spacecraft from spinning motion along

the z"-axls, then slew motion along the y"-axis, and then slew motion along the

x"-axls, radial vector rc results

fc-..y.x " c°S_xt sin_xt 1 •

-sin_xC cOS_xt ] [sin_yt 0 cos_yt]

osotsini]sin o• -sin_xC cos_z 0 (3-8)

0 0 -c°s_gc

In addition to the modification of the azimuth angle made by the spacecraft

slew motion through the formulation of coordinate transformation, shown in

Equation (3-3) to (3-8), accelerations are also induced to activate on the fluid

mass in the dewar container. Accelerations acting on the fluid particle in the

dewar induced by the slew motion of the spacecraft with the coordinate fixed at

the spacecraft center of the mass is as follows (see Figure I):

- G) ÷ ÷ (3-9)

where _ denotes the position vector of the fluid particle in the dewar container

relative to the body frame of the spacecraft; _, angular velocity of the

spacecraft body frame; _, angular acceleration of the spacecraft body frame; and

v, velocity of the fluid particle relative to the spacecraft body frame.

As we indicated earlier, let us assume that the slew motion starts with the

center located at the spacecraft msss center, cartesian coordinate (x'', y'',

z'') is chosen with origin located at the spacecraft mass center. Let us also

assume that x''-z" plane intersects the center of Earth and the spacecraft mass
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center. In other words, azimuth angle of Earth toward the spacecraft mass center

lies in the x' '-z' ' plane. Slew motion is along both the x' '- and y' ' -

coordinates. Thus, co, - (_sx, wsy, 0) and _ - (_sx, '*,y, 0), due to slew motion

becomes

., [+,]
[R.,,]slew

Osy (_,xRy -Rx_sy) + a_R, + 2 _syV, ]
= -o= (_2 r-ax__) -asia,-2_=v, I_a.(_),._ +_, 2) + (=._?r,=.ya.) +2 (_,.vr-o.,,v .) slow

(C) Coupling for the Accelerations of Spinning and Slew Motion of Spacecraft

For some particular reasons required in the scientific spacecraft, it might

be faced with the situation that both spinning and slew motions are needed

simultaneously. To encounter this case, the following formulations are made to

deal with coupling for the accelerations of spinning and slew motion of the

spacecraft:

slew and spinning

[- (_=a_- _=,a=) =,- _=_,,zy-2 _=v,,]
+/(=s_=-o=a,,) =,+_=ax+2==v_ /
L + o, jsp nn,o,,,=,coupling

(3-zz)

where _= and _= denote angular velocity and angular acceleration, respectively)

of spacecraft spinning motion along the z-axis.

For the case of the GP-B spacecraft, there is no slew motion and the
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spinning is the only acceleration acting on the spacecraft fluid system.

Acceleration due to spacecraft spinning motion becomes

spinning 0 Jspinning

To convert the expression of Equation (3-12) in cartesian coordinate to

cylindrical coordinate, by using the relationships of (R=, RT) - (rcos0, rslng)

and (Vx, vy) - (u= cos$ - u0 sin#, u= sin# + u0 cos#), Equation (3-12) becomes

I.'] + ::IR_.splnnlng = Ry = -rsinB_,2+rcosB_z+2 (u_cosB-%sin@) (3-13)

z spinning 0 Jsplnnlng

and

•.Rp, spinning =

L_.Jspinning
= -_xsinS+_zcos8 =J 1"(_ z +2Ur(_zJ (3-14)

Accelerations induced by spacecraft spinning motion alone becomes

[ar]ae -- .l-,_.-2u._.l
a z spinning [azJ spinning L 0 J ,pinning

(3-zs)

(D) Gravity Gradient Acceleration

The gravity gradient acceleration acting on the fluid mass of spacecraft

can be shown as

_gg:n 2 [3 (f:'d_ f=-_'] (3-16)

where as8 denotes gravity gradient acceleration vector; a, the vector (not a unit

vector) from the fluid element to the spacecraft geometric center; 9c, a unit

vector from the spacecraft geometric center to the center of the Earth; and n.
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the orbit rate (see Figure i).

It is assumed that the gravity gradient exerted on the geometrical center

of the spacecraft orbiting around the Earth on its specified orbit is zero. In

other words, all the gravity acceleration exerted on the spacecraft is nothing

but the gravity gradient acceleration which is defined in Equation (3-16). In

this study, we are interested in investigating how gravity gradient acceleration

affects the dynamical behaviors of cryogenic fluid elements of helium.

For the convenience of mathematical calculation, let us describe all the

parameters involved in Equation (3-16) in terms of cartesian coordinates. In

order to match with the computer simulation, mathematical derivation are

considered in the first quadrant. Figure 1 illustrates the geometrical

relationship of the parameters shown in Equation (3-16).

Let us consider the fluid element of interests, m, located at (r, 0, z) in

cylindrical coordinates and at (x, y, z) in cartesian coordinates. The origin

of the two coordinate systems is located at the center bottom of the dewar tank.

The slew and/or spinning motions, mentioned earlier, are executed at the

spacecraft mass center with cartesian coordinate (x", y", z"). The geometry

center or the spacecraft mass center is located at z - L_. As Idl (not an unit

vector) is much smaller than the distance between the location of the GP-B

spacecraft geometric center to the center of the Earth, rc (an unit vector)

through £he GP-B geometric center and rc (an unit vector) through the fluid

element, m, is basically the same. Assume that vector rc lles in the x-z plane

of the cartesian coordinate.

Radial vector rc with the modification of slew and/or spinning motions

along the x"-, y"-, z"-axes have been derived in Equations (3-3) to (3-8). Based

on the relationship between coordinates (x, y, z) and (x", y", z")

14



-- 1 ly"l
z-L: 0 [zl'J

Vector a in (x, y, z) coordinate becomes

(3-1_)

= [-rcosB,-rsinB,-(z-L=)] (3-18)

Substituting Equations (3-4) and (3-18) in (3-16), non-lnertia frame

expression of gravity gradient acceleration with spinning motion in z-axls

becomes

[a_. 1 r3 [-rsin$1.com (6÷e#c) • (z-L=) cos_ sin_cose.t ÷rcose ]
a_. = n _ [-3 [-rmin,..com (8 ÷ _,C) - (z-L=) cos#p_ sin+_sin_,C + zsinS[ ( 3 --19 )
a_. _ ,-,-_u. [ -3[-rsin_l"c°s(e_est) ÷ (z-Lc)c°s_c°s_ + (z-Lc) ]

Substituting Equations (3-5) and (3-18) in (3-16), non-inertia frame

expressions of gravity gradient acceleration with slew motion in y-axls becomes

_gg. x l

agg, Yl

Rgg, zjsiew in y-axls

= n 2['_ [-rsin_c°S% +c°s$ (z-L=) ]sin_ +rc°sB]rsine (3-20)[-rsin_cose+cos_ (z-L=) ]cos$ + (z-L c)

where _ - _o + a_t.

Substituting Equations (3-6) and (3-18) in (3-16), non-lnertia frame

expressions of gravity gradlent acceleration with slew motion in x-axis becomes

a_.=] [ 3(-rcosesln_l,+cos_m.[rsln_ztslne÷cos_C(z-L_) ]}sin_÷rcos8 ]

a..,I -n'|-_(-zco,e,in_.÷co,#.)I,i,,.c,±ne.co,_.c(,-r-.)l)co,_.,inw=c÷=,Cnel(3-21)
a_..j.,.z==__. [-3(-rcoseminf/_*cos_=. [zmine=tmine÷cose=C (z-L=) ]}com_cos_#zC+ (z-L_ J

The relationship for the coordinate transformation from cartesian to

cylindrical coordinates for any vector F (such as velocity or force vectors ) in

non-lnertla frame of spacecraft bound coordinate can be shown as

15



I'I[c°!°'n'F, = -sne cos8 fy (3-22)
F. 0 Fz

Thus, the gravity gradient acceleration located at (r, 8, z) can be computed from

that located at (x, y, z), shown in Equations (3-18) to (3-21), from the

following relation:

[a' l[°!'s'n0if"''Xgg = agg. ---s n8 cos8 agg.y
egg, . 0 [egg,z]

(3-23)

(E) Jitter Accelerations

In addition to gravity gradient acceleration acting on the fluid element

of on-orbit spacecraft fluid systems, there is another acceleration of gravity

jitter also exerted forces on the fluid systems. The sources of residual

acceleration of gravity Jitter range from slew motion of spacecraft, atmospheric

drag on the spacecraft, background gravity, spacecraft attitude motions arising

from machinery vibrations, thruster firings, crew motion, etc., are also capable

for the excitation of slosh waves in spacecraft fluid systems (Kamotani et al.,

1981; Hung and Shyu, 1991 a,b,c; 1992 a,b,c; 1993 a,b,c; Hung et al., 1992

a,b,c).

Among all of the varieties of jitter accelerations listed, accelerations

induced by slew motion of the spacecraft dominate the forces activated on the

spacecraft fluid systems. Two coordinate systems (cylindrical and cartesian)

chosen in this study are (r, 8, z) with corresponding velocity components (ur,

u#, Uz) for cylindrical, and (x, y, z) with corresponding velocity components

(u., uT, uz) for cartesian coordinates. The origin of these two coordinates are

located at the central bottom of the dewar tank, as shown in Figure I. The
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spacecraft center of mass, or the geometric center of the spacecraft is located

at (xc, y=, zc) - (0, O, Lc). The relationships of the coordinate, velocity and

the force between cartesian and cylindrical coordinates are

. os00!]sin8 0

0 0

(3-24)

[uI/Jy =

U z

['lFa --
Fz

oos0sineilr lsin@ cos8

0 0 [u,j

-sin8 cos8 F z

0 0 F,

(3-25)

(3-26)

In the derivation of acceleration induced by the slew motion of spacecraft,

the coordinate system (x", y", z") is fixed at the spacecraft center of the mass.

The relationships of the coordinate, velocity and acceleration between

expressions with the origin located at the spacecraft center of the mass (x", y",

z") and origin located at the center bottom of the dewar tank (x, y, z) are

• z-L 0 0 z-L

iv]lu][ oo:0  n0i]i 1vy = uy --s e cose
v, u, o LU,J

(3-27)

(3-2s)

IR_] [FI] [c°!@ sin@ il-1[F!l
_y = Fy = -s n@ cos@ F e

z slew slew 0 slew

(3-29)
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11It°!°sineYe = -sne cose Yy (3-30)
F slow 0 F= slow

A detailed expression of [_, l_.T, _],_. are shown in Equation (3-10) of

this report. Jitter acceleration is a summation of acceleration induced by slew

motion and others, such as atmospheric drag on the spacecraft, spacecraft

attitude motions arising from machineryvibration, thruster firing, crew motion,

etc. Thus, jitter acceleration can be expressed as

ra 1ra rlI']r'1= + = - Fe - _sin(2=ft) }

Lagj.zj.l.w La_. zJo_.rs Fz .lo_ LF=Jo_°=.

rcos0sinei][1I[s n0oos00 F .l.w Fz oca.r.

{ l+_sin(2=ft) }
(3-31)

where f is the Jitter frequency (Hz) imposed on the fluid systems of the

spacecraft.

IV. Non-Inertia Frame Mathematical Formulation of Fundamental Equations

Dynamical behavior of fluid elements inside the on-orblt spacecraft fluid

systems are strongly modified by the gravity gradient and gravity jitter

accelerations. In order to accommodate the impact of gravity gradient

acceleration, in particular, on the on-orbit fluid motion, one has to consider

non-inertia frame of the spacecraft bound coordinate rather than adopting inertia

frame coordinate used in ordinary fluid mechanics formulation.

Consider a closed circular cylindrical dewar of radius, a, with height, L,

which is partially filled with cryogenic liquid helium, and rest of the ullage

is filled with a helium vapor. Angular velocity of rotating cylinder is _.
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Density and viscosity of liquid helium and helium vapor are PL, _L, Pv, and _v,

respectively (Mason, 1978). Let us use cylindrical coordinates (r, 8, z), with

corresponding velocity components (u, v, w), and corresponding residual gravity

acceleration, such as gravity gradient components (ass.:, a_. e, aM. z) and gravity

Jitter components (a_.r, a_.0, asj.z). In the derivation of the governing

equations, accelerations induced by the spinning motion of the spacecraft is

included in the formulation. The rest of the acceleration such as slew motion,

atmospheric drag on the spacecraft, spacecraft attitude motions arising from

machinery vibrations, thruster firing and others, are included in the Jitter

acceleration, shown in Equation (3-31). The governing equations for non-lnertia

frame of spacecraft bound coordinates can be shown as follows:

(A) Continuity Equation

I @ (ru)+ ! Ov+@W=o (4-1)
rat _-_ az

(B) Momentum Equations

p _-_+U_+-_-_--_-"@U @U v @U V2 +w@U)@z =- @P+2p_xv+P@r (agj'r+a_'r) +Pr_=2

+i_(V2u_ u 2 @v
r2 r2 _) (4-2)

8v 8v v Sv + uv _ z _p (-_+u_+-_-_ -_-+w ) =- y -- 2p_=u+p (ag_,e+agg.e) -r_=

2 @u)
+_ (V_v---_2 + r---{ -_

(4-3)

p(a--w+ aw yaw 8w =_ap+p +_w@t u_+-_-_+w-_) @z (agJ'z+agv'*)
(4-4)

where
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- +-- (4-5)
r ar 0r r2 a82 az2

In these formulations, 2_,v and 2_zu are the Coriolls acceleration, r_. z is

the centrifugal acceleration, and r_ z is the angular acceleration induced by the

spinning motion of the spacecraft.

In the computation of fluid forces, moment, viscous stress and angular

momentum acting on the container wall of the spacecraft, one has to consider

those forces and moment in the inertia frame rather than the non-lnertia frame,

in particular for the case of the splnnlng motion in the z-axls. To show an

example, one has to transform those vectors from the non-lnertla frame to the

inertia frame for the case of spinning motion in the z-axls.

= sin_)ZtO c°sG)zt0 FzFY (4-61

where prime symbol denotes vectors in the inertia frame while those parameters

without the prime symbol indicate vectors in the non-lnertla frame.

V. Initial and Boundary Conditions of

Spacecraft Fluid System in Microgravlty Environment

Governing equations of the fluid motion in on-orbit spacecraft fluid

systems for non- inertia frame of spacecraft bound coordinates have been

illustrated in Equations (&-l) to (&-6). These equations shall be combined with

the characteristics of gravity gradient and gravity Jitter accelerations as

formulated in Equations (3-11 to (3-311. Initial and boundary conditions shall

be introduced to accommodate solving fluid motion in on-orbit spacecraft fluid

system for non-lnertla frame coordinate (Hung et al., 1990 a,b,c; 1991

a,b,c,d,e, f,g,h,l,J).
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by:

Let the profile of the interface between gaseous and liquid fluids be given

.(t, r, 0, z) - 0 (5-1)

The initial condition of the profile of the interface between gaseous and

liquid fluids at t - to is assigned explicitly, and is given by:

_(t - to, r, 0, z) - 0 (5-2)

A set of boundary conditions has to be supplied for solving the equations.

These initial interface profiles used in this study have been given explicitly

through the steady state computations made by Hung and Leslie (1988) and Hung ot

al (1989 a,b,c,d) which were checked by the experiments carried out by Leslie

(1985). These boundary conditions are as follows:

(I) Along the container wall, the following three boundary conditions

apply:

(a) Interface between solid and liquid fluid: No-penetratlon and no-slip

conditions assure that both the tangential and the normal components

of the liquid velocity along the solid walls will vanish.

(b) Interface between solid and gaseous (vapor) fluid: Similar no-

penetration and no-slip conditions as that shown for interface between

solid and liquid fluid will apply.

(c) At the location of solid-liquld-gaseous (vapor) three phases

interface: No-penetration, but not no-slip condition apply. This

will assure that normal components of liquid and vapor velocities

along the solid wall vanish, and allow a slipping flow of liquid and

vapor fluids along the solid wall at three phase interface location.

The velocity of slipping flow at this location is governed by the

adhesive forces between fluids (liquid and gaseous) and solid walls.
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Also, at this location of three phase interface, a constant contact

angle is present in which the behaviors of wet or dry contacts are

determined by Coulomb interaction between the fluids (liquid and

vapor) and the surface phenomena (material and roughness) of solid

walls.

(2) Along the interface between the liquid and gaseous

fluids, the following two conditions apply:

(a) Kinematic surface boundary conditlon: The liquid (or gaseous) surface

moves with the liquid (or gas) which implies

.__D_D_=O,or
DC

(5-3)

on n (E=E,,r,e,z)

(b) Interface stress condition: Across the liquid-vapor interface, the

stress must be continuous. Based on Landu and Lifshitz (1959), the

stress across the llquid-vapor interface can be expressed as

i 1

(Pa-P,) n i- [ (_lj) - (_ij) L] nj=a ( R--?+ --_) nl (5-4)

where R1 and Rz are the radius of curvatures of two major axes at the point of

interests on the surface of the liquld-vapor interface.

The expressions of radius of curvatures RI and Rz in cylindrical

coordinates from differential geometry can be shown as

1 1 EN-2 FM+GL
--+--= (5-5)
R I R2 EG-F _

where the relationship of cartesian and cylindrical coordinates for the curved
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surface of llquid-vapor interface is

[_] [ rcos8 ]
= | rsin8 (5-6)

[_(_,,r,e)

Here, the confiEuration of the liquid-vapor interface is z - H (t - t_, r, 8);

(5-7)

F- @x @x + @.Fay + @z az (5-8)
ar a8 ar _ ar a8

I II I! II I

Xzr YIr Zrr]

I; = _ x_'y_ z_' (5-9)
_I

(_G-_)_- _ y,_ _l

where,

(5-i0)

[x,,y_;' z'] - ara[x,y,z,] (5-I_)

a [x,y,z] (5-13)
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and,

"I-

o_2

[x,y, Z] (5-14)

Simplifying Equations (5-7) to (5-ii), one obtains

EG-F 2 = r 2(I + H_ 2 + _2) = raD 2

E = 1 + Hr 2, F = SrH e, G = r 2 + /_2

3 3

I

D = (I + H_ 2 + _He 2) _

H_ (-He + r_) (r2G 4-
thee)

L - _z, M = N : and
D rD rD "

Substituting these relations to Equation (5-4), the radius of the curvature

on the curved surface of the configuration of liquid-vapor interface in

cylindrical coordinates can be expressed as follows:

R I _ r rD

Here, in Equations (5-4) and (5-15)

@ui 8u_ 2 3uj: _i_) 8Uk

is the viscous stress tensor; _, the viscous coefficient of the first kind; _,
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the viscous coefficient of the second kind; P, the pressure; a, the surface

tension of the llquid-vapor interface; and nj, the unit vector normal to the

interface; and 61j , the Dirac delta function. Also, subscripts G and L denote

conditions at gaseous and liquids fluids, respectively, across the liquld-vapor

interface.

The fluid stresses across the llquld-vapor interface can be decomposed to

the components normal (nl, a unit vector) and tangential (tl, a unit vector) to

the interface. For the component tangential to the interface, one can take a dot

product of a unit vector tangential to the interface, tl, to Equations (5-4) and

(5-15), which leads to

[(_> t_n>)]L" [(_i>t_nj)]= (5-16)

since nit i - O.

For the component normal to the interface, one can also take a dot product

of a unit vector normal to the interface, nl, to Equations (5-4) and (5-15),

which leads to

=__.o[a rH_. ..__(.____PG- PC- [(Tlinil_j) G- (rlj/_inj)c] r a-r(T ) + rD)] (5-17)

For components normal to the interface along the (r, 8, z) directions in

cylindrical coordinates can be obtained by taking dot products of n=, no, nz

separately to Equations (5-4) and (5-15), which are expressed as

[nz] [(zzJnJ)G - (rrJnJ)il(p= - p,) ne - _(_0_n_)= - (_e_n_)
Ln=J [(_=>n_)_ - (zzjnj)

where (n=, n0, nz) is the unit vector normal to the interface in cylindrical

coordinates (r, 9, z).
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+ ( ) ] (5-18)
Ln=]

For a special case of axial symmetry, component normal to the interface,

shown in Equation (5-17),-can be simplified and becomes

PG - PL - (_jn_nj)G + (zljn_nj) L

. __ d [ r# ] (5-19)
r dr

(I + 2

since a/ao - o, Hr - @H/ar - dz/dr - 4, H0 - 0 and D - (I + 42) 11z for the case

of axial symmetry.

VI. Characteristics of Slosh Wave Induced Fluctuations

in Fluid Moment and Angular Momentum

Slosh wave induced fluctuations in the fluid system of the rotating dewar

introduce time-dependent disturbances in moment and angular momentum of

spacecraft fluid system. In this study, there are induced angular velocities

along the yawing, pitching and rolling axes due to the fluid motion inside

rotating container. These angular velocities in yawing, pitching and rolling

axes, caused by the fluid flows in a partially liquid-filled container, readjust

the angular velocity in rolling axis.

In order to accommodate the spacecraft dynamics of yawing, pitching and

rolling, cylindrical coordinates (shown in Figure I) of rotating container is

transformed into cartesian coordinates based on (x, y, z) - (rcosS, rsini0, z)

with corresponding velocity components (Vx, VT, V,) - (ucos0 - vslnS, usln0 +

vcosS, w). If spacecraft is rotated with respect to mass center at (re, 8c, zc)

in cylindrical coordinates, location of mass center in cartesian coordinates

becomes (xc, Yc, z¢) - (rccos0c, rQslnSc, Zc). Induced angular velocities (_., _,
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_z) in cartesian coordinates becomes

L_.I[-K,.K,_K..
(6-i)

where

K==K_=K,,---O

(x_xc)2+(z-zc)2]

ICx" (Y-Yc) (X_Xc) 2+ (Y-Yc) 2]

ICY"= (x-xc) (X_Xc) a+ (Y-Yc) 2]

As the velocity components are given by

_.][cose
vy[:Isine
V=JLo -s n0!]Ivcose

0

(6-2)

the relationship between the components of induced angular velocity and flow

velocity in cylindrical coordinates can be expressed in the following

formulation:

where

_I'I_
_.][e..e., e..j

(6-3)
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[_x] [ - (Z-Zc) sin@

f_l=l - (z-zc) cos@
[ex^.J [rsinO-rcsin@c

[(rsin@-rcsin@c)2÷(z-zc)2] -I

fy!I I (z-z c)cos@ ]
_yy = - (Z-Z c) sin@

- (zcosO-r_cosOc)
[(zcosO-:_cos@_) 2÷ (z-zc) 2]-I

/_'x][ -resin (@-@c) 1

&,Jk 0

For the case of the GP-B, the axis of rotation is always fixed at the point

of proof mass which is located at the geometric center of the dewar at (x=, yc,zc

- (0, O, L¢) where L_ - 1/2 L and L is the height of the dewar (see Figure I).

By using the computed results of induced angular velocity shown in Equation (6-

3), one can compute the angular momentum (Hx, _, Hz) as follows:

=p

rsin@v=, z

+ (z-Lc) vc,x

rcose%.y -rsinOvc'x ]J vapor

rs in@ Vc, z- (z-L c) Vc,y]]

_=S0 o.IF
rc°sOvc'Y -rsinOvc'xJJli_uid (6-4)

where

I= - rZslnZe + (z I_)2

I= - r2cosZe + (z - _)z

_[zz " r2

; I_ I I_ | rZslngcos8

; _=- _=- r(z I_) cos0
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and

vc.y = sin8 cos8 vc

vc,_ 0 0

The moment of spacecraft can be computed from the time rate of change of

the angular momentum, i.e.,

r.",,.1 r-x1[<'>.,,":-_="."l
Ig/= I-'<;.1"t<'>=',<-<'>'<">'1
L_:J LSs,_J[_ u-.Sy-_ j.s,<]

where wl - (wx, _y, i,) denotes pitching, yawing and rolling angular velocities

of spacecraft in inertia frame.

VII. Mathematical Formulation of Fluid Stresses

and Moment Fluctuations Due to Slosh Waves

For the purpose of considering large amplitude slosh wave activated fluid

stresses exerted on the solid walls of the dewar, the fluid stresses are

decomposed into the tangential and normal components to the walls which can be

expresses as follows:

lI ( au,

<:_[--_-7+i_/e<,.,i, c_-",_. a_:)

rl - ( au,, au
o:P6.,-,t_7+_fla.ax.)" .

(7-2)

where Kt denotes the tangential component of fluid stresses; I_, the normal

component of fluid stresses; P, the thermodynamic pressure; u=, fluid velocity

in a direction; t., unit vector tangential to the wall; nB, unit vector normal

to the wall; _, the molecular viscosity coefficient of fluid; and 64, the Dirac
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delta function. Subscripts e and /9 imply the directions of flow fields.

Figures 2(A) and 2(B) show the geometry of GP-B dewar propellant tank in

both r-z and r-0 planes, respectively. In order to make the computation of fluid

stresses match the geometry of the dewar tank, mathematical formulations have

been divided into three sections: (A) Top wall (dome) section, (B) Bottom wall

(dome) section, (C) Cylindrical section (including probe section of the inner

wall of dewar) and (D) Baffle plates section. There are several plates of baffle

inserted in the dewar [see Figure 3(A) and 3(B) for baffle board illustration].

Baffles with the shape of hollow circular plate with an inner radius RI, and an

outer radius R z are installed along the probe column of the dewar located at z

- Li, where i - I, 2 ..... n plates and the thickness of each plate is d. Figure

4 shows the GP-B dewar container equipped with probe and baffle boards.

(A) Top Wall (Dome) Section:

Topwan -_ + cos2_ (7-3)

top w,I/=_ -_-_+ COS_ -_+ sin_ (7-4)

au aw .
(IT) Top w.n=P+L*(-_ +-_)sln2(_ (7-5)

(B) Bottom Wall (Dome) Section:

(ii_)r-, (_)cos2,auOwBo==(xnWall=_& -_ + (7--6)

r4 rll au %v i 8w+av
(ITs) _c_,_, ,-n:_ll--a -_ -_" (7-7)

(9.) -au (7-8)
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(C) Cylindrical Section (including probe section of the inner wall of dewar):

_-x Iau +aw_ (7-9)
(H_)_1_ic._:_ Or/

r4 I 1

(He)_1_i=a1=_ ___+_)OuOv_ (7-10)

(D) Baffle Plates Section:

(ll.)c_lindzlcal= P

__, : (au aw )

(7-11)

(7-12)

(iic)r4 1 au + 8v (7-13)

(Hn) saf:l. = ±p (7-14)

where 4 is the azimuth angle of the dome; and (_)r'" and (Hi) =-0 denote tangential

stresses in r-z and r-0 planes of the dewar, respectively. Velocity components

in cylindrical coordinates of (r, 0, z) are shown as (u, v, w).

The stress distribution shown in Eqs. (7-3) to (7-14) can be integrated

with respect to area and obtain the tangential and normal forces on top wall,

bottom wall, and cylindrical sections of the dewar.

(A) Top Wall (Dome) Sections:

(F_) r-e

(Fn ) _op
[ (H=)_-']) r-O R cos dCd 
k(no)Wall Top Wall

(7-15)
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(B) Bottom Wall (Dome)Section:

(Fc) r-,]
(F=) r_ =ff (_c):4 a_cos_d_d0 (7-16)

Wall

(C) Cylindrical Section (including probe section of the inner wall of dewar):

(F=) z-,]

(Fc) z-O] =ff (II=)r4 Rc_dOd z

(H.) .zcrlaWor

(D) Baffle Plate Section:

(7-17)

I . I ll rereo (7-ms>
<fo> "'L

where R_ and 4 denote the radius and the azimuth angle of the dome section,

respectively; and R_I and R¢2 are the radii of _he inner and outer walls of the

cylindrical section of the dewar (see Figs. 2 and 3).

In order to accommodate the spacecraft dynamics of pitching, yawlng and

rolling, cylindrical coordinates (shown in Figs. 2 and 3) of the rotating

container is transformed into cartesian coordinates based on (x, y, z) - (rcos8,

rsln0, z) with correspondlng velocity components (v., vr, v=) - (ucos8 - vsln8,

usln$ + vcosS, w). For the case of the GP-B Spacecraft, the axis of rotation is

always fixed at the point of proof mass which is located at the geometrfcal

center of the dewar at (xc, Yc, zc) " (0, 0, L/2), where L is the height of the

dewar (see Figs. 2 and 3). To fulfill this goal, stress distributions, shown in
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Eqs. (7-15) to (7-18). have to be recalculated in the (x. y. z)

Figs. 2 and 3).

directions (see

+{ _f-(If=)_ wan-ff (IIc)_e_, wan] R_cos_inOd_dS}

+{[ f f - (Ift)z_z_,rcyzina.rsinO + f f (Tin)z,n.rcy//,d, rcosO] Re, dSdz }

+_-ai { _f (If=)_-ZtncosSrdrdS+ _ (II=)r-,saftl.sinSrdrd@]],.._, __Jar'[

._ {_I,=_,z,,.oo.0=,,• ,_,z.,.._o,,,,,_,L.,._}(7-z9)

+ {cff-ln_, "_ ffOuter CYlinder sin0 + (II,)outer cyzznaorc°s0] RczdSdz }

r-O
+{ _f (II=)rop wan+ f f (II=)

z-6 c +
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(7-20)

The moment of stress force acting on the dewar wall of the container can

be computed from the cross product of moment arm, [which is the perpendicular

distance from the location of proof mass of the spacecraft to the total forces],

and the total forces. Components of the moment can be computed from the

following formulations:

_ =[ff (.t>=-z f f< ] gTop Wall + TTt) r-z "sin0 dOBottom Wall R COS3¢ de

+[ffm=>=o_W.ll+ff<n.Iso,-=.....ll]R_c°sZ0"sinO'sin0d@ do

+ {[ff-,IIa)out._:-°cyliaaorsinO+ U ,IIn)o.=orcyl/aaorcOs0] Rczdodz}

ff r--O" (C¢-Ld+Rasin@)a_cos@'sin¢'sinOd_ do+ [ (IIt) Top Wall
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+ ff (_.),o==_ wan] (Lc-Ld+R_sin$) R_ 2cOs2$'sinSdSd0

o._.rozllad._cos8 ff (IIa)o.=.rcy1_.d.rSin8] (z-L_) Rc_dOdz}

+ d

"_ {[-Sf (ll,)_IsinerdrdO+fS (ll,)r4safflocosSrdidO]]..L,__ "( -Lc L,--_ )}

_-_ { [-//(Ht)_:nainOzdr48÷//(_t, Ztt, coa0rUrcm],_.,,._(-L,÷r-t.d)} (7-22)

"_=_f(II=)=-" ff ]( *)_top wan + (II_)r-,sotcomwan Lc-Ld+R_ sin R cos_in_osOd_dO

+_f-(II=) r-cropwan-f f (IIc) r-eso_, wan] (Lc-Ld+Rdsin_) " R_cos_-sinOd_d8

+(_f-(TIc)rZ_z_erCylinderSinO+ff(IIn)ir_erCyllnder_COsO]

+[ff -(T[c)_-OterCylia4ezsinO+ ff(_o)_=._=,o_.=coso]

"(z-Lc)RczdOdz

(z-L:) R_zdOdz}

-(_ff(_=)=-" ff _-" ffTopw.n+ (H_) so,so, w.n] "a_cos_cosOd<_ dS+ [ (H.) to,, ,,,n

+ff(no),o_=.,,m"R_'cos2_'sin_ _cos0d_ d0

+ f f (]'[C) _erCj, linderR2clCOS_d_d_ + f f (]'[¢)_Z_erCj, linderRc22cos_d_d_}
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-¥

(7-23)

M,=[//- (He):-" f f ]Top wall+ (]I=)r-" "sinsoct_ wallR_COS2_ _-sin0_os0d_d8

+If/(H_:) r-% f f r-e ]Topw.n+ (He)so_=o,won a_cos_os28d_ d8

_f (I[a)Topwan+I[ (II.)so=c. wan]a_c°s3_ _ino_OsOd_de

+[ff (_) Z.._,o_o._o_o+f f (no),nnerCylinder'SinO]R2clcosOdOdz

( + [ ff(_)r 0 +

-([ff-('U=) [._,_,wan+f[ (Hi:)_:tom w.n] "R_cos2+_in_zosS"sin0d_ de

Topwan- (lie)soee_ wan a_cos_'sin28d$ de

+[ff-(_=)9_.=_,_o,.=sin0+/f(n,,)_=.r_l;o_o=cos0]a_Ssin0--dz

where L d denotes the helghc of the dome (see Fig. 2).

After the integration of Eqs. (7-19) thru (7-2h),

can be rewritten as the following expression:

components of the moment

[_] LT'-(L'-L°)FJ,_ : l(r..-Lo)F,-L_r,I (7-2S)

36



where I_, Iv, and I_ denote the components of the moment arm along x, y, and z

axes, respectively.

By using the relation of F_ L= - O, or Fx Lx + Fy L_ + F z (L z - L c) - O,

moment arms of the moment of fluid stress moment induced by the slosh wave

excitation can be computed from the following relations:

2 2 2
,-L F;+F;+F,[F y-F xJ

VIII. Methods of Numerical Simulation

Detailed descriptions of the computational algorithm applicable to

cryogenic fluid management under mlcrogravity are also given in our earlier

studies (Hung et al., 1990 a,b,c). In this report, a full-scale GP-B and AXAF

spacecraft propellant dewar tanks with a radius of 68 cm and a height of 145 cm

will be used in the numerical simulation. The propellant tank is 80% filled with

cryogenic liquid helium for the GP-B dewar while the rest of the ullage is filled

with hellumvapor. The temperature of cryogenic helium is 1.8 K. In this study

the following data were used: liquid helium density - 0.146 g/cm 3, heliumvapor

density - 0.00147 g/cm 3, fluid pressure - 1.66 x 103 dyne/cm z, surface tension

coefficient at the interface between liquid helium and helium vapor - 0.353

dyne/cm, liquid helium viscosity coefficient - 9.61 x 10 -5 cmZ/s; and contact

angle - 5°. The initial profiles of the liquld-vapor interface for the rotating

dewar are determined from computations based on algorithms developed for the

steady state formulation of mlcrogravity fluid management (Hung et al., 1990

a,b,c).

A staggered grid for the velocity components is used in this computer

program. The method was developed by Harlow and Welch (1965) for their MAC
q

(marker-and-cell) method of studying fluid flows along a free surface. The
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finite difference method employed in this numerical study was the "Hybrid Scheme"

developed by Spalding (1972). The formulation for this method is valid for any

arbitrary interface location between the grid points and is not limited to middle

point interfaces (Patankar and Spalding, 1972). An algorlthmfor a seml-implicit

method (Patankar, 1980) was used as the procedure for modeling the flow field.

The time step is determined automatically based on the size of the grid points

and the velocity of flow fields. A detailed description of the computational

algorithm applicable to microgravity fluid management is illustrated in our

earlier studies (Hung et al., 1990a,b,c). Figures 5(A) and 5(B) show the

distribution of grid points for the dewar tank with probe for GP-B dewar

container in the radial-axlal plane and radial-circumferential plane,

respectively, in cylindrical coordinates.
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Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure Captions

GP-B spacecraft coordinate systems with azimuth angle _ from

spacecraft mass center to the center of the Earth. Coordinate (x",

y", z") for slew motion and coordinate(x, y, z) for fluid mechanics

computation.

Geometry of the GP-B dewar container with the coordinate system

perpendicular and tangential to the container wall. (A) Geometry in

r-z plane and (B) Geometry in r-$ plane.

Geometry of the GP-B dewar container with baffle-boards and their

locations. (A) Geometry in r-z plane and (B) Geometry in r-$ plane.

The GP-B module showing main elements of liquid helium dewar, probe

and baffle-boards.

Distribution of grid points in the (A) Radial-axial plane, and (B)

the radial-clrcumferential plane of the cylindrical coordinates for

the GP-B dewar tank.
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